
NAG Fortran Library Routine Document

D02BHF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02BHF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a Runge–Kutta–Merson method, until a user-specified function of the solution is
zero.

2 Specification

SUBROUTINE D02BHF(X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, G, W, IFAIL)

INTEGER N, IRELAB, IFAIL
real X, XEND, Y(N), TOL, HMAX, G, W(N,7)
EXTERNAL FCN, G

3 Description

The routine advances the solution of a system of ordinary differential equations

y0i ¼ fiðx; y1; y2; . . . ; ynÞ; i ¼ 1; 2; . . . ; n;

from x ¼ X towards x ¼ XEND using a Merson form of the Runge–Kutta method. The system is defined
by a subroutine FCN supplied by the user, which evaluates fi in terms of x and y1; y2; . . . ; yn (see
Section 5), and the values of y1; y2; . . . ; yn must be given at x ¼ X.

As the integration proceeds, a check is made on the function gðx; yÞ specified by the user, to determine an
interval where it changes sign. The position of this sign change is then determined accurately by
interpolating for the solution and its derivative. It is assumed that gðx; yÞ is a continuous function of the
variables, so that a solution of gðx; yÞ ¼ 0 can be determined by searching for a change in sign in gðx; yÞ.
The accuracy of the integration and, indirectly, of the determination of the position where gðx; yÞ ¼ 0, is
controlled by the parameter TOL.

For a description of Runge–Kutta methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Parameters

1: X – real Input/Output

On entry: X must be set to the initial value of the independent variable x.

On exit: the point where gðx; yÞ ¼ 0:0 unless an error has occurred, when it contains the value of x
at the error. In particular, if gðx; yÞ 6¼ 0:0 anywhere on the range X to XEND, it will contain XEND
on exit.

2: XEND – real Input

On entry: the final value of the independent variable x.

If XEND < X on entry, integration proceeds in a negative direction.

D02 – Ordinary Differential Equations D02BHF

[NP3546/20A] D02BHF.1

3: N – INTEGER Input

On entry: the number of differential equations, n.

Constraint: N > 0.

4: Y(N) – real array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn.

On exit: the computed values of the solution at the final point x ¼ X.

5: TOL – real Input/Output

On entry: TOL must be set to a positive tolerance for controlling the error in the integration and in
the determination of the position where gðx; yÞ ¼ 0:0.

D02BHF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution obtained in the integration. The
relation between changes in TOL and the error in the determination of the position where
gðx; yÞ ¼ 0:0 is less clear, but for TOL small enough the error should be approximately proportional
to TOL. However, the actual relation between TOL and the accuracy cannot be guaranteed. The
user is strongly recommended to call D02BHF with more than one value for TOL and to compare
the results obtained to estimate their accuracy. In the absence of any prior knowledge the user

might compare results obtained by calling D02BHF with TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 if p
correct decimal digits in the solution are required.

Constraint: TOL > 0:0.

On exit: normally unchanged. However if the range from x ¼ X to the position where gðx; yÞ ¼ 0:0
(or to the final value of x if an error occurs) is so short that a small change in TOL is unlikely to
make any change in the computed solution, then TOL is returned with its sign changed. To check
results returned with TOL < 0:0, D02BHF should be called again with a positive value of TOL
whose magnitude is considerably smaller than that of the previous call.

6: IRELAB – INTEGER Input

On entry: IRELAB determines the type of error control. At each step in the numerical solution an
estimate of the local error, EST, is made. For the current step to be accepted the following
condition must be satisfied:

IRELAB ¼ 0

EST � TOL�maxf1:0; jy1j; jy2j; . . . ; jynjg;
IRELAB ¼ 1

EST � TOL;

IRELAB ¼ 2

EST � TOL�maxf�; jy1j; jy2j; . . . ; jynjg, where � is machine precision.

If the appropriate condition is not satisfied, the step size is reduced and the solution recomputed on
the current step.

If the user wishes to measure the error in the computed solution in terms of the number of correct
decimal places, then IRELAB should be given the value 1 on entry, whereas if the error requirement
is in terms of the number of correct significant digits, then IRELAB should be given the value 2.
Where there is no preference in the choice of error test, IRELAB ¼ 0 will result in a mixed error
test. It should be borne in mind that the computed solution will be used in evaluating gðx; yÞ.
Constraint: 0 � IRELAB � 2.

7: HMAX – real Input

On entry: if HMAX ¼ 0:0, no special action is taken.

D02BHF NAG Fortran Library Manual

D02BHF.2 [NP3546/20A]

If HMAX 6¼ 0:0, a check is made for a change in sign of gðx; yÞ at steps not greater than jHMAXj.
This facility should be used if there is any chance of ‘missing’ the change in sign by checking too
infrequently. For example, if two changes of sign of gðx; yÞ are expected within a distance h, say,
of each other, then a suitable value for HMAX might be HMAX ¼ h=2. If only one change of sign
in gðx; yÞ is expected on the range X to XEND, then the choice HMAX ¼ 0:0 is most appropriate.

8: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn.

Its specification is:

SUBROUTINE FCN(X, Y, F)

real X, Y(n), F(n)

where n is the actual value of N in the call of D02BHF.

1: X – real Input

On entry: the value of the argument x.

2: Y(n) – real array Input

On entry: the value of the argument yi, for i ¼ 1; 2; . . . ; n.

3: F(n) – real array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must be declared as EXTERNAL in the (sub)program from which D02BHF is called.
Parameters denoted as Input must not be changed by this procedure.

9: G – real FUNCTION, supplied by the user. External Procedure

G must evaluate the function gðx; yÞ at a specified point.

Its specification is:

real FUNCTION G(X, Y)

real X, Y(n)

where n is the actual value of N in the call of D02BHF.

1: X – real Input

On entry: the value of the independent variable x.

2: Y(n) – real array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ; n.

G must be declared as EXTERNAL in the (sub)program from which D02BHF is called. Parameters
denoted as Input must not be changed by this procedure.

10: W(N,7) – real array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

D02 – Ordinary Differential Equations D02BHF

[NP3546/20A] D02BHF.3

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended
value is 0. When the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:0,
or N � 0,
or IRELAB 6¼ 0, 1 or 2.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from the
current point x ¼ X, or dependence of the error on TOL would be lost if further progress across the
integration range were attempted (see Section 8 for a discussion of this error exit). The components
Yð1Þ;Yð2Þ; . . . ;YðnÞ contain the computed values of the solution at the current point x ¼ X. No
point at which gðx; yÞ changes sign has been located up to the point x ¼ X.

IFAIL ¼ 3

TOL is too small for the routine to take an initial step (see Section 8). X and Yð1Þ;Yð2Þ; . . . ;YðnÞ
retain their initial values.

IFAIL ¼ 4

At no point in the range X to XEND did the function gðx; yÞ change sign. It is assumed that
gðx; yÞ ¼ 0:0 has no solution.

IFAIL ¼ 5

A serious error has occurred in an internal call to C05AZF. Check all subroutine calls and array
dimensions. Seek expert help.

IFAIL ¼ 6

A serious error has occurred in an internal call to an integration routine. Check all subroutine calls
and array dimensions. Seek expert help.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all subroutine
calls and array dimensions. Seek expert help.

7 Accuracy

The accuracy depends on TOL, on the mathematical properties of the differential system, on the position
where gðx; yÞ ¼ 0:0 and on the method. It can be controlled by varying TOL but the approximate
proportionality of the error to TOL holds only for a restricted range of values of TOL. For TOL too large,
the underlying theory may break down and the result of varying TOL may be unpredictable. For TOL too
small, rounding error may affect the solution significantly and an error exit with IFAIL ¼ 2 or IFAIL ¼ 3
is possible.

The accuracy may also be restricted by the properties of gðx; yÞ. The user should try to code G without
introducing any unnecessary cancellation errors.

D02BHF NAG Fortran Library Manual

D02BHF.4 [NP3546/20A]

8 Further Comments

The time taken by the routine depends on the complexity and mathematical properties of the system of
differential equations defined by FCN, the complexity of G, on the range, the position of the solution and
the tolerance. There is also an overhead of the form aþ b� n where a and b are machine-dependent
computing times.

For some problems it is possible that D02BHF will return IFAIL ¼ 4 because of inaccuracy of the
computed values Y, leading to inaccuracy in the computed values of gðx; yÞ used in the search for the
solution of gðx; yÞ ¼ 0:0. This difficulty can be overcome by reducing TOL sufficiently, and if necessary,
by choosing HMAX sufficiently small. If possible, the user should choose XEND well beyond the
expected point where gðx; yÞ ¼ 0:0; for example make jXEND� Xj about 50% larger than the expected
range. As a simple check, if, with XEND fixed, a change in TOL does not lead to a significant change in
Y at XEND, then inaccuracy is not a likely source of error.

If the routine fails with IFAIL ¼ 3, then it could be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine, the
system may be very stiff (see below) or so badly scaled that it cannot be solved to the required accuracy.

If the routine fails with IFAIL ¼ 2, it is likely that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. The user should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. If overflow occurs using D02BHF, D02PDF can be used
instead to detect the increasing solution, before overflow occurs. In any case, numerical integration
cannot be continued through a singularity, and analytical treatment should be considered;

(b) for ‘stiff’ equations, where the solution contains rapidly decaying components, the routine will
compute in very small steps in x (internally to D02BHF) to preserve stability. This will usually
exhibit itself by making the computing time excessively long, or occasionally by an exit with
IFAIL ¼ 2. Merson’s method is not efficient in such cases, and the user should try D02EJF which
uses a Backward Differentiation Formula method. To determine whether a problem is stiff, D02PCF
may be used.

For well-behaved systems with no difficulties such as stiffness or singularities, the Merson method should
work well for low accuracy calculations (three or four figures). For high accuracy calculations or where
FCN is costly to evaluate, Merson’s method may not be appropriate and a computationally less expensive
method may be D02CJF which uses an Adams method.

For problems for which D02BHF is not sufficiently general, the user should consider D02PDF. D02PDF is
a more general routine with many facilities including a more general error control criterion. D02PDF can
be combined with the rootfinder C05AZF and the interpolation routine D02PXF to solve equations
involving y1; y2; . . . ; yn and their derivatives.

D02BHF can also be used to solve an equation involving x, y1; y2; . . . ; yn and the derivatives of
y1; y2; . . . ; yn. For example in Section 9, D02BHF is used to find a value of X > 0:0 where Yð1Þ ¼ 0:0.
It could instead be used to find a turning-point of y1 by replacing the function gðx; yÞ in the program by:

real FUNCTION G(X,Y)
real X,Y(3),F(3)
CALL FCN(X,Y,F)
G = F(1)
RETURN
END

This routine is only intended to locate the first zero of gðx; yÞ. If later zeros are required, users are
strongly advised to construct their own more general root finding routines as discussed above.

D02 – Ordinary Differential Equations D02BHF

[NP3546/20A] D02BHF.5

9 Example

To find the value X > 0:0 at which y ¼ 0:0, where y, v, � are defined by

y0 ¼ tan�

v0 ¼ �0:032 tan�

v
� 0:02v

cos�

�0 ¼ �0:032

v2

and where at X ¼ 0:0 we are given y ¼ 0:5, v ¼ 0:5 and � ¼ �=5. We write y ¼ Yð1Þ, v ¼ Yð2Þ and
� ¼ Yð3Þ and we set TOL ¼ 1:0E�4 and TOL ¼ 1:0E�5 in turn so that we can compare the solutions.
We expect the solution X ’ 7:3 and so we set XEND ¼ 10:0 to avoid determining the solution of y ¼ 0:0
too near the end of the range of integration. The value of � is obtained by using X01AAF.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02BHF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER N
PARAMETER (N=3)

* .. Local Scalars ..
real HMAX, PI, TOL, X, XEND
INTEGER I, IFAIL, IRELAB, J

* .. Local Arrays ..
real W(N,7), Y(N)

* .. External Functions ..
real G, X01AAF
EXTERNAL G, X01AAF

* .. External Subroutines ..
EXTERNAL D02BHF, FCN

* .. Executable Statements ..
WRITE (NOUT,*) ’D02BHF Example Program Results’
XEND = 10.0e0
HMAX = 0.0e0
IRELAB = 0
PI = X01AAF(X)
DO 20 J = 4, 5

TOL = 10.0e0**(-J)
WRITE (NOUT,*)
WRITE (NOUT,99999) ’Calculation with TOL =’, TOL
X = 0.0e0
Y(1) = 0.5e0
Y(2) = 0.5e0
Y(3) = 0.2e0*PI
IFAIL = 0

*
CALL D02BHF(X,XEND,N,Y,TOL,IRELAB,HMAX,FCN,G,W,IFAIL)

*
WRITE (NOUT,99998) ’ Root of Y(1) at’, X
WRITE (NOUT,99997) ’ Solution is’, (Y(I),I=1,N)
IF (TOL.LT.0.0e0) WRITE (NOUT,*)

+ ’ Over one-third steps controlled by HMAX’
20 CONTINUE

STOP
*
99999 FORMAT (1X,A,e8.1)
99998 FORMAT (1X,A,F7.4)
99997 FORMAT (1X,A,3F13.5)

END
*

D02BHF NAG Fortran Library Manual

D02BHF.6 [NP3546/20A]

SUBROUTINE FCN(T,Y,F)
* .. Parameters ..

INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real F(N), Y(N)

* .. Intrinsic Functions ..
INTRINSIC COS, TAN

* .. Executable Statements ..
F(1) = TAN(Y(3))
F(2) = -0.032e0*TAN(Y(3))/Y(2) - 0.02e0*Y(2)/COS(Y(3))
F(3) = -0.032e0/Y(2)**2
RETURN
END

*
real FUNCTION G(T,Y)

* .. Parameters ..
INTEGER N
PARAMETER (N=3)

* .. Scalar Arguments ..
real T

* .. Array Arguments ..
real Y(N)

* .. Executable Statements ..
G = Y(1)
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02BHF Example Program Results

Calculation with TOL = 0.1E-03
Root of Y(1) at 7.2884
Solution is -0.00000 0.47485 -0.76010

Calculation with TOL = 0.1E-04
Root of Y(1) at 7.2883
Solution is 0.00000 0.47486 -0.76011

D02 – Ordinary Differential Equations D02BHF

[NP3546/20A] D02BHF.7 (last)

	D02BHF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	X
	XEND
	N
	Y
	TOL
	IRELAB
	HMAX
	FCN
	X
	Y
	F

	G
	X
	Y

	W
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

